On the Evolutionary Significance of the Paleocyphonautidae: How Fossils and Larvae Impact Evolutionary Reconstructions

Aldemaro ROMERO*, Raymond R. ROGERS** & Julio SEGÜ***
*Department of Biological Sciences, Arkansas State University, P.O. Box 599, State University, AR72467, USA (romero@macalester.edu)
**Geology Department, Macalester College, St. Paul, MN 55105-1899, USA (rogers@macalester.edu)
***Museu Geològic del Seminari de Barcelona. Diputació 231, 08007 Barcelona, SPAIN

KEY WORDS - Paleocyphonautidae, Bryozoa, Fossil impressions, Developmental biology, Upper Muschelkalk Ladinian, NE Spain.

ABSTRACT - On the basis of new specimens and knowledge acquired in the last 25 years on developmental biology, we revisit the paleocyphonautid fossils from the Upper Muschelkalk of Montréal-Alcover, Spain. Recent studies on the morphology and physiology of the cyphonauta larvae are consistent with the notion originally proposed that Paleocyphonautidae may represent an adult stage of what we know today as cyphonaut larvae which may have been a basal group at the stem of the origin of the Bryozoa. The stratigraphical and paleoecological data is also consistent with this hypothesis.

RESUMEN - Basados en nuevos especímenes recolectados y el conocimiento adquirido en los últimos 25 años en materia de biología del desarrollo, hemos analizado de nuevo los fósiles originalmente clasificados como pertenecientes a la familia de los paleocyphonautidos del Muschelkalk Superior de Montréal-Alcover, España. Estudios recientes acerca de la morfología y fisiología de las larvas efímeras arrojan información que es congruente con la idea propuesta originalmente que Paleocyphonautidae pueden representar un estado adulto de lo que conocemos hoy día como larvas efímeras y que han podido pertenecer a un grupo basal en el tronco que dio lugar a los briozos. Los datos estratigráficos y paleoecológicos también apoyan esta hipótesis.

INTRODUCTION

In 1978 Via Boada and Romero published the description of a group of fossil impressions from the Upper Muschelkalk (Triassic) of the Montréal-Alcover locality, Tarragona Province, northeastern Spain. Those fossil impressions represented a body plan not described before for adult metazoans. They were assigned to a new family, Paleocyphonautidae, and then hypothesized to be a primitive form that was related to the cyphonauta larvae. Since their first description new fossil impressions have been collected, but the overall nature of these organisms has remained enigmatic.

This paper has three aims: a) to revise the descriptions of the original specimens based on new specimens; b) to discuss their biological nature based on their characteristics; and, c) to discuss their systematic position at the phylum level.

OLD AND NEW SPECIMENS

Via Boada & Romero (1978) published a paper describing five fossil impressions from the Spanish Muschelkalk. The paper focused on the taphonomy of the site and the description of the fossil impressions. All specimens described were characterized by their triangular shape with what appears to be an apex or apical organ (Fig. 1, a-e. See and Via Boada & Romero, 1978). One of those specimens, named as Palaeocyphonautes vertexcatus (Fig. 1b), shows a number of cilia-like hairs in the form of panache that extend from the apical organ. Another specimen (Palaeocyphonautes sp., Fig. 8 in Via Boada & Romero, 1978) appears to have been deposited laterally and shows what was interpreted to be a triangular opening between the two halves. For those specimens previously described in Via Boada & Romero (1978), the total length varies between 238 and 115 mm, although the specimen depicted in Fig. 8 in Via Boada & Romero (1978), may be larger since it is 247 mm in height.

In November and December 2000, we visited the Montréal-Alcover area to study its geology and collect new fossils. At this time we collected an additional fossil impression (Fig 1d) and also found two specimens (Fig. 1e-f) at the Museu Municipal d’Aljumet de L’Alcover de Tarragona Province, which resemble the specimens previously studied. The new specimens are smaller (between 84 and 25 mm in length) and somewhat different in shape.
Fig. 1, d-e-f. Additional fossil impression.
GEOGRAPHICAL SETTING AND STRATIGRAPHY

The Montral-Alcover area is situated about 100 km SW of Barcelona, in the Province of Tarragona (ca. 41°10'N 1°10'E). The specific quarry in which we found the fossils described here belongs to Mr. Primitivo Méndez. The others were at the Museo Geológico del Seminario Conciliar of Barcelona, Spain.

The area is composed mostly of laminated dolomites (lithographic limestones or dolomitic limestones, locally known as "Pedra de Alcover" or Alcover Stone). They correspond to the Upper Muschelkalk of northeastern Spain, which is of late Ladinian (Longobardian) age (Rieppel & Hagdorn, 1998). Known as the Alcover Unit, it is part of the Depositional Sequence 5 of the Triassic Supereycele in the Catalan Coastal Ranges. This unit has an average thickness of 50 m, and is divided into three sub-units. The middle sub-unit, which contains almost all of the fossils found so far, is made up of several coarsening and thickening up cycles with thinly bedded, laminated dolomitic at their bases. The middle and upper sub-units show a general shallowing trend from anoxic to intertidal-supratidal deposits and have been interpreted as the early hightand systems tract. The Upper Muschelkalk unit has been interpreted as a homoclinal ramp of barrier-type that evolved into a homoclinal ramp with buildups (Calvet & Tucker, 1995).

The depositional environment is one of pre-existing bioherms of sponges and algae, i.e., relatively small basins with stagnant, and anoxic bottom waters, protected by old recitcal barriers. The lithographic laminated dolomites fill up depressions between the dasycladacean mud-mound reefs. Sedimentation of fossiliferous shales took place at a high rate and occurred in shallow lagoonal basins within an extended reef complex along the northwestern coast of the southern branch of the Neotethys. There is no evidence for strong currents (Esteban Cerdá et al., 1977; Sanz et al., 1993).

Fossils found so far are generally complete (part and counterpart). The fauna is presumably allochtonous, and was passively transported to the burial site (Via Boada et al., 1977). In the case of vertebrates, the preservation process of the fossils has been unique because all of the skeletal material has been destroyed by dolomitization, after the surface of the fossil had been molded by a thin sheet of residual clay that formed in pressure solution (Hemleben & Freeds, 1997).

CYPHONAUTA LARVA AND THE PalaECYPHONATIDAE

Ehrenberg (1835) first described a cyphonauta larva as a rotifer and Schneider (1869) correctly identified it as a bryozone larva. Since then, they have been thoroughly studied by both developmental biologists and marine biologists specialized in planktotrophic fauna.

The cyphonautas larvae share a number of characteristics. They have a compressed body with a bivalved shell that is held together by an adductor muscle. The valves are usually chitinous, smooth, and transparent, but may be particle-encrusted. These larvae are roughly triangular in shape although morphology can vary (see Ryland, 1964; Shreeve & Hayward, 1995; Hayward, 2001). They range in size from about 100 to 800 mm in height. They move by beating cilia at their apex (Stricker, 1987). They also have a U-shaped gut with pharynx, stomach and intestine, which is supplied with particulate food from a feeding current generated by a sieve of laterofrontal cilia (Atkins, 1955; Strathmann & McEdward, 1986; Nielsen & Riisgard, 1998). This allows them to spend up to two months as free-living organisms in the plankton (see Taylor, 1988, and references therein) (for morphological comparison purposes between cyphonauta larvae and our paleocyphonautidea, see Fig. 3 in Via Boada and Romero, 1978).

The cyphonauta larva of bryozaans is unusual among ciliary-suspension feeders with upstream particle capture because the length of the ciliated band that produces the feeding current does not increase exponentially relative to body length during larval development and growth. McEdward & Strathmann (1987) developed a model that suggested that a cyphonauta larva form requires a much greater concentration of food than other planktotrophic larvae to gain the same organic material in the same time. Thus, the cyphonautas proved inferior in quantitative measures of capacity for suspension feeding. Presumably these larvae thrive only in nutrient rich environments.

Planktotrophic larvae-like cyphonautas spend a relatively long period in the plankton. Species with long-lived planktotrophic larvae are expected to have better dispersal abilities than species with short-lived non-planktotrophic larvae. Therefore, they are likely to experience allopatric speciation and be less prone to extinction caused by geographically localized events (Taylor, 1988). Another inference that could be made is that in other marine invertebrates, gene flow within and between populations is likely to be poorer in species having non-planktotrophic larvae, and hence the frequency of allopatric and quasi-sympatric speciation may be greater. Two characters suggest the primitive nature of the Cyphonauta larvae: its planktotrophy and the presence of a functional gut.
Another unusual characteristic of the cyphonautes larva is its behavior. Abelson (1997) found that cyphonautes larvae were able to respond to two flow parameters, i.e., flow direction and shear (i.e., velocity). He found that settling cyphonautes larvae possess a mechanism of locomotion, in addition to swimming, which may facilitate exploration in flow conditions that otherwise would sweep the larvae away and that these larvae are able to explore substrates in all directions in flow velocities that are much faster than their locomotion speeds. Abelson further speculated that upstream exploration might enable larvae to locate specific, obligatory settlement sites by tracking waterborne chemicals to their sources.

DISCUSSION

In Via Boada & Romero (1978), Paleocyphonataidae were placed as a family within the superphylum Lophophorata that was considered at that time to be made up of brachiopods, bryozoans, and phoronid worms. In that article it was stated that such a superphylum (sometimes also ranked as a subkingdom or a phylum) was probably artificial despite the shared lophophore. A number of morphological and developmental characteristics made some researchers place them, first, within the protostomes, and later within deuterostomes, and even as a separate metazoan lineage.

After years of controversy, molecular studies have confirmed that the group Lophophorata is artificial. Halanych et al. (1995) studied the 18S ribosomal DNA sequences of all the three types of lophophorates are protostome metazoans, and concluded that bryozoans represent an independent, basal clade, while brachiopods, phoronid, mollusks, and annelids all share a common ancestor. Further, Halanych et al. (1995) suggested that brachiopods were not a monophyletic group. Brachiopods are divided into two classes: Articulata and Inarticulata. According to that study, the articulate brachiopods are sister taxa of the phoronids while the inarticulate brachiopoda are a sister group of the mollusks and annelids. Halanych et al. (1995) also suggested that one of the reasons for the earlier confusion based on developmental characters was the fact that many of those characters were more plastic than earlier recognized.

What does this new, more complicated picture of invertebrate phyla mean for the Paleocyphonataidae? Taylor (1988) proposed that the evolution of brooded larvae in Chelostomata (one of the orders of bryozoans characterized by containing most of the recent species of that phylum) generated elevated rates of speciation and triggered major diversification within that group. Upon close examination of larval types and skeletal evidence in early growth stages, he concluded that the cyphonautes larva was the primitive developmental state for the group and, thus, must be considered the ancestral form. He also found skeletal evidence of larval brooding in the chelostomes first appearing in the Late Albion, immediately before their adaptive radiation, and proposed that the evolution of non-planktotrophy with associated increase in speciation rate triggered this radiation (Taylor, 1988).

Stratigraphically speaking, the age of the Paleocyphonataidae is consistent with Taylor’s hypothesis. Paleocyphonataidae are known from the Upper Triassic, in rocks older than those that yield the first Chelostomata, which appear during the Jurassic. From the Jurassic to the Late Cretaceous there was virtually no diversification of this group and it was not until the early Late Cretaceous when non-planktotrophic larvae appeared as part of the life cycles among these animals.

From a paleoecological viewpoint, the nature of the deposits where the Paleocyphonataidae have been found is also consistent with some of the hypotheses on the origin of bryozoans. According to Bottjer & Jablonski, (1985), planktotrophic bryozoans may have originated in coastal areas from planktotrophic larvae. Taylor and Cuffey (1992) suggested that the Cretaceous chelostome bryozoan faunas of the North American Western Interior, possessed planktotrophic cyphonautes larvae, in contrast to the majority of contemporaneous European species which had ovicells and non-planktotrophic larvae and that they probably inhabited a brackish estuarine environment which in many ways resembled that of the depositional environment of the Montalvian-Alcocon site (which was on a former coral reef). Further, the vast majority of the fauna collected from that locality is that of either planktotrophic or neritic organisms that somehow drifted into an anoxic environment (Via Boada et al., 1977).

CONCLUSIONS

The use of larvae to understand the phylogeny of metazoans has a long history but we are a long way to really utilize such information to propose testable hypotheses. Issues such as phenotypic plasticity and, above all, the almost complete lack of fossilized larvae, have created a number of stumbling blocks in this regard (for a general discussion on these and other issues see Hall & Wake, 1999). Yet, studies such as Taylor (1988) can provide fertile ground to reconstruct scenarios under which a synthetic and interdisciplinary approach can be taken. This paper is an attempt along those lines in relation to the Paleocyphonataidae.
ACKNOWLEDGEMENTS

Dr. Sebastián Calzada gave us access to the specimens deposited at the Museo del Seminario Conciliar de Barcelona. Mr. Primitivo Méndez gave us access to his property where the fossils were found. This research was possible thanks to a Wallace grant of Macalester College to AR and RRR.

REFERENCES

STRICKER, S.A. 1987. Ultrastructure of the apical

