Light-oriented swimming of schooling fish in continuous channels

Luis E. Levin, Ricardo Salazar, Pedro Belmonte & Aldenaro Romero
Escuela de Biología, Universidad Central de Venezuela, Apartado 47106, Los Chaguaramos, Caracas 1041-A, Venezuela
* Also at Department of Biology, University of Miami, P.O. Box 249118, Coral Gables, FL 33124, U.S.A.

Received 31.7.1987 Accepted 14.4.1988

Key words: Sun-compass oriented swimming, Inertial orientation, Circular channel, Infinite channel, Chirodon pulcher, Venezuela

Synopsis

Fish groups were tested both in a circular and in a figure eight-shaped channel. In both cases fish showed a long lasting, constant direction swimming provided that illumination was maintained at a constant angle around the channel. In the circular channel, fish did not reverse direction, as would be expected, when light angle was shifted from one side to the other in the channel. However, direction reversals did occur when these illumination shifts were performed on the eight-shaped channel. We suggest that constant-oriented swimming reflects a sun-compass oriented behavior, but swimming at a constant angle in the circular channel produces an irreversible disarrangement of the inertial-orientation system, which does not occur in the eight-shaped channel due to the geometrical relationship between the light and the shape of the channel.

Introduction

One of the major problems for the study of orientation in fish is the difficulty of providing an experimental setup which allows the fish to swim uninteruptedly in a fixed direction without barriers or influence of any moving stimuli. Laboratory devices that promote constant swimming in fishes have been used to measure metabolism (Puckett & Dill 1964), 3-D structure of schools (Partridge et al. 1980), ontogeny of schooling behavior (Shaw 1969), and orientation to external cues (Hoar 1958). In all these experiments the fish movements were either promoted by a moving stimulus or constrained to short trajectories in straight alleys. Previous observations (Levin & Belmonte 1988), indicated that groups of schooling fish showed a long-lasting, constant-oriented swimming, when placed in a circular channel provided that illumination angle was constant along the channel. We hypothesized that the sustained constant-direction swimming in the circular channel reflected a sun-compass oriented behavior. According to this interpretation, it should be expected that the swimming direction in the circular channel would be reversed if the illumination angle was the same, but at the opposite side of the channel. To test this hypothesis we used both a previously described circular channel (the light-centered circular channel) and a new channel design, the light-centered infinite channel.

The apparatus

The light-centered circular channel was an annular-shaped channel of 100 cm of external diameter and 15 cm width, in which two symmetrical sources of light were used (for a full description of the appara-
The light source, central light, consisted of a clear light incandescent bulb (G.E. 75 W) placed 36 cm above the water surface over the geometric center of the channel. The second source of light was a set of 18 incandescent bulbs (Sylvania 30 W) placed around the channel at a height of 59 cm above the water surface. These lamps had radially directed collimators which restrict the number of light sources to a maximum of two at any given point of the channel. Both sources projected light at an angle of 40° on the water surface throughout the channel. Thus, unlike other methods that employ asymmetric light sources, the light-centered circular channel (henceforth, circular channel) provided the fish with the possibility of swimming uninterrupted without perceiving changes in the angle of incidence of light.

The light-centered infinite channel (henceforth infinite channel) consisted of an eight-shaped double circular channel (Fig. 1). The channel was built using a 10 cm diameter plastic pipe (PVC) cut longitudinally in half. Each circle was 106 cm in external diameter, 10 cm wide, and had a maximum depth of 5 cm. The total length of the channel was 647 cm. The two circles of this eight-shaped device were named according to their relative position as east and west cycles. The crossing point was built in such a way that fish travelling along one arm could not deviate to the other one (Fig. 2). A 25 × 20 cm
mirror was placed at 45° over the extreme end to allow observations in a horizontal plane. The two central light bulbs (G.E. 75 W) were collimated using a 17 cm - diameter cylinder. For peripheral illumination, a bulb (G.E. 100 W) enclosed in an opaque container with a circular slit was placed at the geometric center of each cycle. There were 36 (5 × 12 cm) mirrors attached with rubber bands to a ring (163 cm diameter) placed on four movable supporting bases. Thus, the light was directed onto the water surface at a constant angle of 40°. The main difference between the circular channel and the infinite channel was that the latter provided no accumulation of turns when fish swam in a constant direction.

The experiments

Previous observations (Levin & Belmonte 1988) indicated that groups of approximately 100 Moenkhausia dichroura, a schooling characid, showed a constant-oriented swimming when placed in the circular channel. When the light angle was fixed, swimming direction was constant for several months and then changed. When the light angle was systematically varied between horizontal and vertical, fish reversed direction, and the reversal angle was different at different times of the year. In view of these observations we hypothesized that the sustained constant-direction swimming in the circular channel reflected a sun-compass oriented behavior. Were our hypothesis correct, it should be expected that the swimming direction of fish in the circular channel would be reversed if the light system was shifted from peripheral light to central light or vice versa.

Since we did not find specimens of M. dichroura in the field, we used groups of the abundant species Cheirodon pulcher, a small schooling characid with similar distribution in the flood plains of southern Venezuela. Preliminary observations showed that groups of around 100 C. pulcher maintained, as well as M. dichroura, a long-lasting constant swimming direction. But, when the lights were shifted in successive days, they did not reverse swimming direction as expected, even with a whole 12 h light period with asymmetric light. This light source was an incandescent light bulb (75 W) placed at one side of the channel, 1 m away, and at water level. Oriented swimming did not occur under this illumination. Under the assumption that the lack of response to light shifts was due to some kind of learning of the curvature of the channel, we performed the experiments described herein.

Experiments were performed with groups of the
schooling characid *Cheirodon pulcher* ranging in total length from 20 to 30 mm, caught in the Guapo river, Estado Miranda, Venezuela (10°15'N; 66°17'W) on February 8, 1985. In the laboratory the fish were held in 601 tanks receiving dry food every other day except for experimental days. Light regime was 12 h per day (0600–1800 h). Water temperature was 25–28°C. Groups were transferred from the common tank to the corresponding channel under asymmetric light between 1754 and 1800 h the day before the experiment began. Swimming direction (clockwise or counter-clockwise) was continuously monitored and recorded on time-lapse videotape.

**Experiment in the circular channel**

In experiment EI, 15 groups of 10 naïve (not previously exposed to any kind of experimental procedure) fish were independently tested in the circular channel under central light or peripheral light during the morning. Nine of these groups continued under the same light during the rest of the daylight period, and the other six received a light shift from central to peripheral light or vice versa at 1200 h. (Light shifts are indicated in Figure 3 by breaks between bars; before the new light was lit, fish were left in darkness during 15 min.) Four of the groups subjected to light shifts remained in the channel, and received during the next morning the same type of light as in the previous afternoon.

For all groups, the initial swimming direction displayed in the morning did not reverse during the day (Fig. 3) (binomial (B) test 15/15, p<0.001), even with a light shift at noon (B: 9/9, p<0.01), or after a 12 h dark period (B: 4/4, p = 0.06). On the other hand, swimming direction was not correlated with the type of light used in the first morning (under central light: 5 clockwise and 5 counterclockwise (p = 0.22); under peripheral light: 2 clockwise and 5 counterclockwise, p = 0.16).

**Experiments in the infinite channel**

In experiment EII, a new group of 20 naïve *C.
terms of the mentioned anchoring to the curvature.

In order to determine whether the anchoring in one direction in the circular, but not in the infinite channel, was dependent on the shape of the channel and not on any other factor, one cycle of the infinite channel was transformed into a circular channel by blocking the connections to the other cycle. The corresponding central light and peripheral light were used. In experiment EII a new group of 20 naïve fish was tested during 7 days in the halved infinite channel. The lights were shifted between successive days. This group showed swimming direction reversals during the first day and a half, but during the rest of the experimental period swimming direction was always clockwise inde-

pendently of the light used (Fig. 5). Thus, as well as in the circular channel, anchoring develops in this halved infinite channel which, except for the shape, is in all aspects similar to the infinite channel.

Discussion

The outcome of EI may suggest that swimming in a constant direction is triggered and maintained by a light falling at a constant angle, although direction itself is not determined, as would be the case if y-axis orientation would have been in operation (Goodyear & Bennett 1979). Nevertheless, we propose that the lack of consistency between type of light and swimming direction of the groups in the circular channel is because when recently installed, the mechanism for constant light-orientation is not in operation. Instead, random exploratory movements associated with escaping from an unfamiliar confinement dominate. Once this ‘escape response’ extinguishes, two orientation mechanisms compete in this fish. One of them is the maintenance of a constant angle with the light source. A second one is an inertial guidance mechanism which, in natural conditions and in the absence of external cues, allows for straight course navigation by equating the amount of turns to the right and to the left (Kleerekoper et al. 1969). The balance between the two directions could be, in part, mediated through the vestibular system as has been suggested for other vertebrates (Barlow 1964), al-
though no direct evidence in fish is available (Smith 1983). It could be assumed that the inertial mechanism is normally zeroed with reference to the sun. After some time swimming in the circular channel, the zero of the inertial mechanism would be adjusted to the curvature of the channel. Hence, fish would fix a random initial direction, and become unable to respond to a light change which demands a discrete double fold adjustment. Therefore, swimming would anchor in the original direction.

The tests performed in the infinite and in the halved infinite channel suggest that this interpretation may be correct. Swimming direction reversals occurred during the first session in the halved infinite channel while in the circular channel a single direction was apparent from the start. This may indicate that the escape response is more enduring in the halved infinite channel, perhaps because of its lower water level and smaller cross section. But once a unique direction is maintained for some time, there is no response to light shifts.

The infinite channel allows fish to swim at a constant angle with light, in a constant direction, and with no accumulation of turns to one particular side. In this condition no systematic bias in the inertial mechanism would develop. Therefore no reluctance to direction reversals as a response to light angle shifts should appear. In fact, the infinite channel promoted in a group of C. pulchra a constant oriented swimming with direction depending upon the angle of incidence of light. This behavior was displayed after several days during which direction reversals under constant illumination occurred. As discussed for the halved infinite channel, this may probably represent attempts to escape from confinement and as expected would be more enduring since no anchoring develops in the infinite channel.

In the halved infinite channel a mixed situation appeared: fish changed direction during the first days (as in the infinite channel), but once a constant direction was shown, it persisted independently of the light used (as in the circular channel). Therefore the light dependency of swimming direction in the infinite, and not in the circular channel, should be attributed to the shape of the channels rather than to other differences between the conditions in both situations, such as number of fish in the group, channel section, temperature or light intensity.

These results show that groups of C. pulchra maintain a constant direction in the light centered circular channel, and that the direction itself does not depend on the angle of light. In contrast, in the light centered infinite channel, fish show a dependence on light angle which might be a factor in the seasonal migrations of this flood plain species (Levin & Belmonte 1988). An inertial guidance system seems to be implicated in the orientation of this fish.

Acknowledgements

We thank Renata Wulff and Wendula Reihl for their helpful comments. Financial support came from CDSCH, C.05.10.1980/88.

References cited


